graph2mat.PointBasis
- class graph2mat.PointBasis(type: str | int, R: float | ndarray, basis: str | Sequence[int | Tuple[int, int, int]] = (), basis_convention: Literal['cartesian', 'spherical', 'siesta_spherical'] = 'spherical')[source]
Bases:
object
Stores the basis set for a point type.
- Parameters:
type (Union[str, int]) – The type ID, e.g. some meaningful name or a number.
basis_convention (BasisConvention) – The spherical harmonics convention used for the basis.
basis (str | Sequence[int | Tuple[int, int, int]]) –
Specification of the basis set that the point type has. It can be a list of specifications, then each item in the list can be the number of sets of functions for a given l (determined by the position of the item in the list), or a tuple specifying (n_sets, l, parity).
It can also be a string representing the irreps of the basis in the
e3nn
format. E.g. “3x0e+2x1o” would mean 3 l=0 and 2 l=1 sets.R (Union[float, np.ndarray]) –
The reach of the basis. If a float, the same reach is used for all functions.
If an array, the reach is different for each SET of functions. E.g. for a basis with 3 l=0 functions and 2 sets of l=1 functions, you must provide an array of length 5.
The reach of the functions will determine if the point interacts with other points.
Examples
Methods
copy
(**kwargs)from_sisl_atom
(atom[, basis_convention])Creates a point basis from a sisl atom.
maxR
()Returns the maximum reach of the basis.
to_sisl_atom
([Z])Converts the basis to a sisl atom.
Attributes
Returns the number of basis functions per point.
Returns the irreps in the e3nn format.
Returns the number of sets of functions.
- property e3nn_irreps
Returns the irreps in the e3nn format.
- classmethod from_sisl_atom(atom: Atom, basis_convention: Literal['cartesian', 'spherical', 'siesta_spherical'] = 'siesta_spherical')[source]
Creates a point basis from a sisl atom.
- Parameters:
atom – The atom from which to create the basis.
basis_convention – The spherical harmonics convention used for the basis.
- property num_sets: int
Returns the number of sets of functions.
E.g. for a basis with 3 l=0 functions and 2 sets of l=1 functions, this returns 5.